del1(.2(x, .2(y, z))) -> f4(=2(x, y), x, y, z)
f4(true, x, y, z) -> del1(.2(y, z))
f4(false, x, y, z) -> .2(x, del1(.2(y, z)))
=2(nil, nil) -> true
=2(.2(x, y), nil) -> false
=2(nil, .2(y, z)) -> false
=2(.2(x, y), .2(u, v)) -> and2(=2(x, u), =2(y, v))
↳ QTRS
↳ DependencyPairsProof
del1(.2(x, .2(y, z))) -> f4(=2(x, y), x, y, z)
f4(true, x, y, z) -> del1(.2(y, z))
f4(false, x, y, z) -> .2(x, del1(.2(y, z)))
=2(nil, nil) -> true
=2(.2(x, y), nil) -> false
=2(nil, .2(y, z)) -> false
=2(.2(x, y), .2(u, v)) -> and2(=2(x, u), =2(y, v))
F4(false, x, y, z) -> DEL1(.2(y, z))
=12(.2(x, y), .2(u, v)) -> =12(x, u)
F4(true, x, y, z) -> DEL1(.2(y, z))
DEL1(.2(x, .2(y, z))) -> F4(=2(x, y), x, y, z)
DEL1(.2(x, .2(y, z))) -> =12(x, y)
=12(.2(x, y), .2(u, v)) -> =12(y, v)
del1(.2(x, .2(y, z))) -> f4(=2(x, y), x, y, z)
f4(true, x, y, z) -> del1(.2(y, z))
f4(false, x, y, z) -> .2(x, del1(.2(y, z)))
=2(nil, nil) -> true
=2(.2(x, y), nil) -> false
=2(nil, .2(y, z)) -> false
=2(.2(x, y), .2(u, v)) -> and2(=2(x, u), =2(y, v))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F4(false, x, y, z) -> DEL1(.2(y, z))
=12(.2(x, y), .2(u, v)) -> =12(x, u)
F4(true, x, y, z) -> DEL1(.2(y, z))
DEL1(.2(x, .2(y, z))) -> F4(=2(x, y), x, y, z)
DEL1(.2(x, .2(y, z))) -> =12(x, y)
=12(.2(x, y), .2(u, v)) -> =12(y, v)
del1(.2(x, .2(y, z))) -> f4(=2(x, y), x, y, z)
f4(true, x, y, z) -> del1(.2(y, z))
f4(false, x, y, z) -> .2(x, del1(.2(y, z)))
=2(nil, nil) -> true
=2(.2(x, y), nil) -> false
=2(nil, .2(y, z)) -> false
=2(.2(x, y), .2(u, v)) -> and2(=2(x, u), =2(y, v))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
F4(false, x, y, z) -> DEL1(.2(y, z))
F4(true, x, y, z) -> DEL1(.2(y, z))
DEL1(.2(x, .2(y, z))) -> F4(=2(x, y), x, y, z)
del1(.2(x, .2(y, z))) -> f4(=2(x, y), x, y, z)
f4(true, x, y, z) -> del1(.2(y, z))
f4(false, x, y, z) -> .2(x, del1(.2(y, z)))
=2(nil, nil) -> true
=2(.2(x, y), nil) -> false
=2(nil, .2(y, z)) -> false
=2(.2(x, y), .2(u, v)) -> and2(=2(x, u), =2(y, v))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DEL1(.2(x, .2(y, z))) -> F4(=2(x, y), x, y, z)
Used ordering: Polynomial interpretation [21]:
F4(false, x, y, z) -> DEL1(.2(y, z))
F4(true, x, y, z) -> DEL1(.2(y, z))
POL(.2(x1, x2)) = 2 + x1 + 2·x2
POL(=2(x1, x2)) = 0
POL(DEL1(x1)) = x1
POL(F4(x1, x2, x3, x4)) = 2 + x2 + 2·x3 + 3·x4
POL(and2(x1, x2)) = 0
POL(false) = 0
POL(nil) = 0
POL(true) = 0
POL(u) = 0
POL(v) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F4(false, x, y, z) -> DEL1(.2(y, z))
F4(true, x, y, z) -> DEL1(.2(y, z))
del1(.2(x, .2(y, z))) -> f4(=2(x, y), x, y, z)
f4(true, x, y, z) -> del1(.2(y, z))
f4(false, x, y, z) -> .2(x, del1(.2(y, z)))
=2(nil, nil) -> true
=2(.2(x, y), nil) -> false
=2(nil, .2(y, z)) -> false
=2(.2(x, y), .2(u, v)) -> and2(=2(x, u), =2(y, v))